Select Comments to the DART-IC on Chlorsulfuron Relevant to Proposition 65 Delisting

May 21, 2014

Michael Battalora, Ph.D., Regulatory Toxicologist, DuPont Crop Protection

Arthur Lawyer, Ph.D., President, Technology Sciences Group
Chlorsulfuron Overview

- Developmental conclusions
 - Studies in rabbits
 - Study in rats

- Reproduction conclusions
 - Reproduction studies in rats
Developmental toxicity conclusions

- The original finding of increased resorptions in rabbits was not reproduced in a guideline study using a more robust design & higher dose levels.

- Effects observed in the replacement studies have been clarified to be the result of:
 - Increases in offspring number influencing the weight of fetal rabbits
 - Maternal toxicity effecting fetal weight in the case of the rats
Developmental toxicity – Alvarez (1991a) rabbit study

- Chlorsulfuron on GD 7-19, 20 does/dose, 0.5% methyl cellulose:
 - 0, 25, 75, 200 or 400 mg/kg/day (original study)
 - 0, 400 or 1000 mg/kg (supplement study)
- No increase in resorptions at any dose; not even at 1000 mg/kg
- Slight decreases in fetal body weight at 400 mg/kg, not considered biologically significant, since within the historical control range
- U.S. EPA noted the decrease in weight might be attributed to ↑ offspring number*, so we put this to the test in a supplement to Alvarez**
 - Analysis of Covariance tested correlation between fetal body weight & either dose or pup number
 - Fetal body weight
 - did not correlate with dose
 - did correlate with number of pups

**Munley 2012, Supplement 3 to Alvarez
Teratology Study in Rabbits (Hoberman et al., 1980)

- Chlorsulfuron in corn oil: 0, 10, 25 or 75 mg/kg/day on GD 6-19, sacrificed GD 29
- Resorption rate at the top dose (75 mg/kg) was higher than concurrent control & reported as test substance-related
- U.S. EPA eventually required a new study as the 1980 study was guideline deficient
 - Low # of animals - guideline calls for ~20 animals/group with implantation sites at necropsy
 - Hoberman had 16/17 does/dose with only 12/13 to evaluate in high dose and control
- When number of animals is low, historical control data is more critical, hence a supplement was made....
Munley 2014:
Supplement 1 Revision 2 of (Hoberman et al., 1980)

- Compared results to historical control data, MARTA* Data (performing lab contributed data)
- Small litters may have lower hormone levels, which could make it difficult for does to sustain pregnancy, leading to resorptions**
- Assessed data with & without totally resorbed litters
 - MARTA data likely a mixture of with & without 100% resorptions
 - Next slide shows the impact of 1 doe at 10 mg/kg & 75 mg/kg each with 100% resorptions

*Middle Atlantic Reproduction & Teratology Association, Lang, PL, editor (1993). HRP Inc. Performing lab is listed as a participant
<table>
<thead>
<tr>
<th>Dose: mg/kg/day</th>
<th>0</th>
<th>10</th>
<th>25</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pregnant rabbits included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbits / # pregnant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>16 / 13</td>
<td>16 / 14</td>
<td>17 / 17</td>
<td>17 / 16</td>
</tr>
<tr>
<td>Rabbits evaluated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>14</td>
<td>16died GD 18</td>
<td>13@</td>
</tr>
<tr>
<td>Mean # resorptions/litter (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7 (1.2)</td>
<td>1.4 (1.7)</td>
<td>0.7 (1.0)</td>
<td>2.1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Mean % resorptions/litter (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 (23)</td>
<td>23.9 (32)</td>
<td>8.5(12)</td>
<td>33.7(28)*</td>
<td></td>
</tr>
<tr>
<td>Pregnant rabbits with 100% resorptions excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbits / # pregnant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>16 / 13</td>
<td>16 / 14</td>
<td>17 / 17</td>
<td>17 / 16</td>
</tr>
<tr>
<td># 100% resorptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>1</td>
<td>1died GD 18</td>
<td>1</td>
</tr>
<tr>
<td>Rabbits evaluated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>12@</td>
</tr>
<tr>
<td>Mean # resorptions/litter (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7 (1.2)</td>
<td>1.2 (1.6)</td>
<td>0.7 (1.0)</td>
<td>2.2 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Mean % resorptions/litter (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 (23)</td>
<td>18.0 (24)</td>
<td>8.5 (12)</td>
<td>28.2 (21)</td>
<td></td>
</tr>
<tr>
<td>MARTA Historical Control Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean # resorptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of means: 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range: 0 - 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean % resorptions/litter**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of means: 8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range: 0 – 47.3^</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant
@ One dead GD 12, one euthanized in extremis, one with scars-previous pregnancy
^ Mean # resorptions in a group / # of litters
**Group mean of [(resorptions per litter / implantations per litter) x 100]
^^Range high values: 29.2 for D29 studies, 47.3 for D28 studies. Hoberman covered both ranges
Hoberman et al., 1980: Maternal effects

Maternal toxicity not clearly described by the author & the dosing regimen allowed for weight recovery; however, data during dosing is available in the report

- One death at 25 mg/kg
- Two deaths/dying at 75 mg/kg
- Range finder: 2/4 died at 100 mg/kg & 4/4 ≥300 mg/kg*

- Gross pathology changes increased with dose, pale liver & kidney & nutmeg liver most often noted (suggesting hepatic congestion)
- Rabbits were large suggesting they may have been old; hence, age may have impacted the data

Food consumption & weight changes during dosing re-analyzed in detail

Hoberman et al., 1980: Maternal effects

- Frequency of does with 0-20 g/day food intakes over GD 7-20

<table>
<thead>
<tr>
<th>Dose (mg/kg/day)</th>
<th># Animals</th>
<th>Number of low food intakes (≤ 20 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>75</td>
<td>17</td>
<td>62</td>
</tr>
</tbody>
</table>

- Similar to finding in the literature which report a correlation between ↑ resorptions & ↓ food intake*

- With chlorsulfuron body weight ↓ during dosing, esp. at 75 mg/kg:
 - 8 does ↓ ≥300 g during dosing; of those, 4 dropped >400 g
 - These marked weight decreases are not easily noted due to the study design, as weights recovered after dosing

- Decreased food intake & body weight, along with the deaths demonstrate that 75 mg/kg was maternally toxic

Developmental Toxicity Studies in Rabbits: Summary of resorptions

- Conclusions based on the top dose in both studies are difficult due to low animal numbers - 1980 study design & both studies mortality
- Mean % resorptions/litter was within or slightly over the historical control range; always within range for mean # resorptions
- No dose response for resorptions in 1980 study
- Resorptions at 75 mg/kg were
 - Influenced, in part, by a few does with low numbers of implants*
 - Either spurious, or if test substance-related, occurred in the presence of significant maternal toxicity
- No increase in resorptions in guideline 1991 study, with a robust number of animals & a broad dose range
- ↑ resorptions by chlorsulfuron are no longer considered relevant in U.S. EPA’s documents

*1 doe at 75 mg/kg had 1 implant which totally resorbed, another had 2 implants & 1 resorbed
Teratogenicity study in rats, Alvarez, 1991b

- Not used as the basis for TRI Listing by U.S. EPA
- Recently reviewed by the U.S. EPA – not of concern
- U.S. EPA’s definition of maternal toxicity in its 1991 Guidelines for Developmental Toxicity Risk Assessment:

 “Agents that produce developmental toxicity at a dose that is not toxic to the maternal animal are esp. of concern…However, the more common situation is when adverse developmental effects are produced only at doses that cause *minimal maternal toxicity* [marginal but significantly reduced body weight, reduced weight gain, or specific organ toxicity, and at the most no more than 10% mortality]; in these cases, the developmental effects are still considered to represent developmental toxicity and should not be discounted as being secondary to maternal toxicity.”

Emphasis added
Teratogenicity study in rats (Alvarez, 1991b)

- 25 rats/dose mated with males, gavaged with chlorsulfuron in 0.5% MC at 0, 55, 165, 500 or 1500 mg/kg on GD 7-16, sacrificed GD 22

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>0</th>
<th>55</th>
<th>165</th>
<th>500</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean fetal weight (g)</td>
<td>5.44</td>
<td>5.58</td>
<td>5.48</td>
<td>5.34</td>
<td>4.91*</td>
</tr>
</tbody>
</table>

- Mean fetal weight ↓ 10% at 1500 mg/kg
- Maternal weight recovers somewhat, since dosing stops on GD 16, but during dosing – next slide
Teratogenicity study in rats, (Alvarez, 1991b) cont.

- Maternal effects
 - **500 mg/kg:** vaginal discharge, ↓ food intake, ↓ weight gain
 - **1500 mg/kg:**
 - 2 treatment-related deaths,
 - Findings as with 500 mg/kg, but more pronounced:
 - vaginal discharge,
 - stained perineum,
 - swollen limbs & face,
 - perinasal staining,
 - ↓ food intake 18-33% over GD 7-17,
 - ↓ adjusted final body weight 4%,
 - weight gain ↓ 50% over GD 7-17,
 - ↓ adjusted weight gain significantly different 30% ↓ over GD 7-22
Teratogenicity study in rats, (Alvarez, 1991b) cont.

1998 U.S. EPA Guideline *Prenatal developmental Toxicity Study*, Dose levels & selection:

“the highest dose should be chosen with the aim to induce some developmental and/or maternal toxicity *but not death or severe suffering*. …maternal mortality…not be more than ~10% …the highest dose tested need not exceed 1000 mg/kg/day…higher levels of death may invalidate the study”

- Based on today’s standards, the findings at 1500 mg/kg are considered overly toxic, not minimally toxic
- The decrease in fetal body weight can be clearly attributed to overt maternal toxicity
Female & male reproductive toxicity conclusions:

- 1981 3-generation study retrospective analyses demonstrated:
 - Fertility index was within the historical control range
 - Fertility index was not a statistically significant finding

- 2005 2-generation study:
 - Dosing 3-fold higher than 1981 study
 - No test substance-related changes in reproductive parameters
Reproductive toxicity

- U.S. EPA Reproductive Assessment Guidance of 1993 recommends statistical tests which were not routinely used in 1981; those tests suggests that the finding is spurious
Reproductive toxicity – new study

- DuPont conducted a guideline-compliant reproduction study in rats (Mylchreest 2005)
 - Highest dose was 7500 ppm *versus* 2500 in the previous study
 - Two generations according to guideline - no current guidelines use 3 generations
 - Only adverse effects: decreases in parental body weight, weight gain & food efficiency
 - No test substance-related effect on fertility or any reproductive parameters seen at 7500 ppm
 - Included more reproductive parameters such as sperm motility
Reproductive toxicity – 2005 study

Fertility Index (# pregnant/copulated)

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>0</th>
<th>100</th>
<th>500</th>
<th>2500</th>
<th>7500</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility index</td>
<td>88.5</td>
<td>89.3</td>
<td>93.3</td>
<td>96.7</td>
<td>93.3</td>
</tr>
<tr>
<td></td>
<td>(23/26)</td>
<td>(25/28)</td>
<td>(28/30)</td>
<td>(29/30)</td>
<td>(28/30)</td>
</tr>
<tr>
<td>F1 generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility index</td>
<td>81.5</td>
<td>88.5</td>
<td>92.6</td>
<td>96.6</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td>(22/27)</td>
<td>(23/26)</td>
<td>(25/27)</td>
<td>(28/29)</td>
<td>(22/28)</td>
</tr>
</tbody>
</table>

From tables 53 and 54
Reproductive toxicity – Supplement to 1981 Study

- Revised the study:
 - Put results in context of historical control data & the 2005 study
 - Perform statistical tests as recommended in EPA’s Standard Evaluation Procedures for Reproductive Toxicity Studies

- Historical control data show the fertility index of 79% falls in the historical range reported by the lab (60 to 100%) & is comparable to control results from the 2005 study (F1 control 81.5%)

- The data were not statistically significant using U.S. EPA recommended tests

- The original study director did not have the advantage of historical control data & the statistical tools that would be recommended later
Reproductive toxicity – Supplement to 1981 Study, cont.

- Examination of the two matings producing the 3rd generations showed that all females were fertile in at least one of the two pairings performed in the 3rd generation.
- Three males were unsuccessful in mating in both F3 generations; similar findings were seen in control males in a 1983 study at the same lab (4/20 infertile).
- In line with in-breeding problems reported to Charles River (main breeder of SD rats).
- Charles River then developed a practice of proving the fertility of males before using in fertility tests.
- Led to the re-derivation of this rat strain.
Thank You