TDCPP:
Assessment of Evidence Using
CIC’s “Known to the State to Cause Cancer” Under Proposition 65

October 12, 2011

Nancy O’Malley, D.V.M., Ph.D.
Albemarle Corporation

on behalf of
Albemarle Corporation
and
ICL-IP America Inc.
Summary

Previous assessments of TDCPP by authorities
 • None have concluded that there is “clear” evidence

“if the weight of scientific evidence clearly shows that a certain chemical causes invasive cancer in humans, or that it causes invasive cancer in animals (unless the mechanism of action has been shown not to be relevant to humans)” [CIC, 2001]
Summary

Using the CIC’s Prioritization Scheme:

• Direct Evidence
 – No human data supporting listing
 – Single 1981 animal study does not support listing (*limited evidence*)

• Indirect Evidence
 – *In vivo* genotoxicity data all negative
 – *In vitro* genotoxicity data does not support listing (less pertinent than *in vivo*)
 – TDCPP differs from other structurally-similar compounds
Evidence in Humans - None

• No evidence that TDCPP causes cancer in humans
 – Epidemiological data on TDCPP is limited
 – Data provide no evidence of causation of cancer of any type, including invasive cancer
 – Stauffer, 1983 involving manufacturing personnel
Single Animal Carcinogenicity Study – No Relevant Invasive Tumors

• Single animal bioassay report - Bio/dynamics, 1981
• Pre-GLP
• Not to current EPA Guidelines
• Tumors were reported at several sites
 – Tumors either
 • Non-invasive
 • Misclassified by modern histological protocol
 • Observed only well above MTD
CIC Weight of Evidence Guidance

CIC specifies that a single study in one species might be considered sufficient:

• “if the malignant tumors occurred to an unusual degree with respect to frequency, type, location, age at onset, or low dosage, or in a strain not otherwise prone to such tumors.

• “if heavily supported by the indirect evidences”
TDCPP is not Genotoxic

• The weight of the evidence demonstrates that TDCPP is not genotoxic.
• All in vivo data are negative
• EU conclusion (ECHA, 2010)
 – “Regarding notably the five negative in vivo assays, it is considered that TDCP[P] is not genotoxic in vivo and thus no classification for mutagenicity is proposed [for the EU].”
• New studies produced for EU authorities are negative
 – Unscheduled DNA synthesis in hepatocytes (Cifone, 2005)
 – Chromosomal aberrations in CHO cells (Murli, 2004)
<table>
<thead>
<tr>
<th>Substance name</th>
<th>CASRN</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris(1,3-dichloro-2-propyl) phosphate (TDCPP)</td>
<td>13674-87-8</td>
<td></td>
</tr>
<tr>
<td>Tris(2,3-dibromopropyl) phosphate (TDBPP)</td>
<td>126-72-7</td>
<td></td>
</tr>
<tr>
<td>Tris(2-chloroethyl) phosphate (TCEP)</td>
<td>115-96-8</td>
<td></td>
</tr>
<tr>
<td>Tris(1-chloro-2-propyl) phosphate (TCPP)</td>
<td>13674-84-5</td>
<td></td>
</tr>
<tr>
<td>2,2-bis(chloroethyl)trimethylene bis[bis(2-chloroethyl)phosphate (V6)]</td>
<td>38051-10-4</td>
<td></td>
</tr>
</tbody>
</table>
TDCPP

Not Clearly Shown to be Carcinogenic

- The weight of evidence conclusion is that TDCPP has not been clearly shown to be carcinogenic.
 - No evidence in humans
 - Single non-guideline animal bioassay not “clearly shown to be carcinogenic” using the criteria establish by the CIC (2001)
 - Non-genotoxic
 - Differs from other structurally similar compounds
Adrenal Gland Tumors – Non-invasive

- Cortical adenomas of the adrenal gland
 - Significant in the high dose group of female rats
 - MTD was significantly exceeded
 - Non-invasive - did not progress to malignancy
Adrenal Gland Tumor Incidence in Female Rats Treated with TDCPP
(Data from Bio/dynamics, 1981)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Tumor</th>
<th>0 mg/kg/day</th>
<th>5 mg/kg/day</th>
<th>20 mg/kg/day</th>
<th>80 mg/kg/day</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal</td>
<td>Cortical adenoma</td>
<td>8/48</td>
<td>5/27</td>
<td>2/33</td>
<td>19/49*</td>
<td>Noninvasive tumor with high spontaneous incidence that is only increased at excessive dose level</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>5/11</td>
<td>0/0</td>
<td>0/0</td>
<td>1/10</td>
<td></td>
</tr>
</tbody>
</table>

* Identified by the study authors as significantly different from control (P<0.05)
Testes Tumors –
Non-invasive and not relevant

- Interstitial (Leydig) cell tumors of the testes
 - Non-invasive - does not progress to malignancy
 - Not relevant to humans
Testes Tumor Incidence in Male Rats Treated with TDCPP

(Data from Bio/dynamics, 1981)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Tumor</th>
<th>0 mg/kg/day</th>
<th>5 mg/kg/day</th>
<th>20 mg/kg/day</th>
<th>80 mg/kg/day</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testes</td>
<td>Interstitial (leydig) cell tumor 12 months</td>
<td>7/43</td>
<td>8/48</td>
<td>23/47*</td>
<td>36/45*</td>
<td>Noninvasive tumor that has limited relevance for humans</td>
</tr>
<tr>
<td></td>
<td>0/14</td>
<td>0/12</td>
<td>3/13</td>
<td>3/11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Identified by the study authors as significantly different from control (P<0.05)
Kidney Tumors – Non-invasive

• Renal cortical adenomas
 – Non-invasive
 – No progression observed in these lesions
Kidney Tumor Incidences in Male and Female Rats Treated with TDCPP
(Data from Bio/dynamics, 1981)

<table>
<thead>
<tr>
<th>Organ, Sex</th>
<th>Tumor</th>
<th>0 mg/kg/day</th>
<th>5 mg/kg/day</th>
<th>20 mg/kg/day</th>
<th>80 mg/kg/day</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney, male</td>
<td>Renal cortical adenoma</td>
<td>1/45</td>
<td>3/49</td>
<td>9/48*</td>
<td>32/46*</td>
<td>Noninvasive tumor that may be associated with tubular epithelial cell hyperplasia</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/15</td>
<td>0/12</td>
<td>0/13</td>
<td>0/13</td>
<td></td>
</tr>
<tr>
<td>Kidney, female</td>
<td>Renal cortical adenoma</td>
<td>0/49</td>
<td>1/48</td>
<td>8/48*</td>
<td>29/50*</td>
<td>Noninvasive tumor that may be associated with tubular epithelial cell hyperplasia</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/11</td>
<td>0/13</td>
<td>0/9</td>
<td>0/10</td>
<td></td>
</tr>
</tbody>
</table>

* Identified by the study authors as significantly different from control (P<0.05)
Liver Tumors

• Liver tumors generally within historical range for Sprague-Dawley CD rats
• Hepatocellular adenomas
 • Non-invasive
 • Mid- and low-dose groups are in the expected range for Sprague-Dawley rats (McMartin et al., 1992 (1984-1991))
• High-dose male and female incidence rates were elevated
• High-dose results impacted by MTD
 – Hepatocellular carcinomas (males) only at clearly excessive dose
Liver Tumor Incidence in Male Rats Treated with TDCPP
(Data from Bio/dynamics, 1981)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Tumor</th>
<th>0 mg/kg/day</th>
<th>5 mg/kg/day</th>
<th>20 mg/kg/day</th>
<th>80 mg/kg/day</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>Hepatocellular adenoma</td>
<td>2/45</td>
<td>7/48</td>
<td>1/48</td>
<td>13/46</td>
<td>Noninvasive lesion originally described as a “nodule” would now be separated into hyperplasia and adenoma</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/15</td>
<td>0/12</td>
<td>0/13</td>
<td>3/14</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>Hepatocellular carcinoma</td>
<td>1/45</td>
<td>2/48</td>
<td>3/48</td>
<td>7/46#</td>
<td>Increased only at excessive dose level</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/15</td>
<td>0/12</td>
<td>0/13</td>
<td>0/14</td>
<td></td>
</tr>
</tbody>
</table>

Identified by the original study authors as different from control (p=0.06). Not indicated in ECHA (2010) or Frudenthal & Henrich (2000)
Liver Tumor Incidence in Female Rats Treated with TDCPP
(Data from Bio/dynamics, 1981)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Tumor</th>
<th>0 mg/kg/day</th>
<th>5 mg/kg/day</th>
<th>20 mg/kg/day</th>
<th>80 mg/kg/day</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>Hepatocellular adenoma</td>
<td>1/49</td>
<td>1/47</td>
<td>4/46</td>
<td>8/50</td>
<td>Noninvasive lesion originally described as a “nodule” would now be separated into hyperplasia and adenoma.</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/11</td>
<td>0/13</td>
<td>0/9</td>
<td>1/10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hepatocellular carcinoma</td>
<td>0/49</td>
<td>2/47</td>
<td>2/46</td>
<td>4/50</td>
<td>Not significant increase only at excessive dose level</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>0/11</td>
<td>0/13</td>
<td>0/9</td>
<td>0/10</td>
<td></td>
</tr>
</tbody>
</table>
Neoplastic Nodule Classification – Included non-neoplastic observations

- Hepatocellular neoplasia classification has changed
- "Neoplastic nodules"
 - Would be classified differently (after 1986)
 - Old term: "Hepatocellular neoplastic nodule"
 - New terms for same observations:
 - Hepatocellular hyperplasia
 - Hepatocellular adenoma
- Reevaluation would substantially alter the adenoma classifications
- Freudenthal & Henrich (2000) reference to "hepatocellular adenomas" not appropriate
 - Not known how many "neoplastic nodules" were, in fact, neoplastic.
MTD Exceeded

- MTD significantly exceeded
- Resulted in spurious findings.
- Body weights down > 20%
 - High dose
 - Both males and females
- Mortality significantly higher - > 38%
 - High dose
 - Males
- In Sprague-Dawley CD rats, this level of toxicity typically exacerbates already high level of hepatocellular and other neoplasia
TDCPP
Metabolism Summary

(From Fabian & Landsiedel, 2009; Lynn et al., 1991; Nomeir et al., 1981)
(“GSH” is glutathione. “GS-“ is glutathione conjugate attachment.)

Very rapid conjugation

Slower hydroxylation

“Tris” to “Bis”

Excretion (Urine and Feces)

Excretion (Unidentified polar compounds)

Further metabolized (Exhaled as CO₂)