Use of Physical Habitat Data to Estimate Channel Vulnerability: Example from the Dry Creek Watershed

Lilly Allen, Walker Wieland, Barbara Washburn
Ecotoxicology Program, Office of Environmental Health Hazard Assessment

Andy Collison, Philip Williams and Associates

Eric Berntsen, State Water Board
Background

- Assess the vulnerability of Secret Ravine (SR) to erosion
- Test and troubleshoot the Channel Vulnerability Calculator
 - Originally developed as a hydromodification management tool for Contra Costa county
 - Evaluate the Calculators usefulness as a tool for watershed assessment, utilizing data collected with the PHAB protocol
Background on Secret Ravine Creek

- Remnant populations of fall-run chinook salmon
- Rapid urbanization
- Documented sedimentation and turbidity problems
Exceedances of turbidity criteria 2005-2006 water year

Each bar represents an exceedance in turbidity for a 1 hour (blue), 7 hour (red), or 24 hour (yellow) period.

Gaining a better understanding of this type of data - one important reason for this project
Evaluate the use of the Calculator for assessing watershed conditions

- Gives a quantitative measure of bank stability
- Key metric: erodibility ratio (ER) estimates water’s erosive force against resistance of bed & bank materials
- Most data needed already collected under the March 09 revised protocol:
 - Particle size/pebble count
 - Gradient
 - Bankfull metrics
 - Bankfull = height water reaches along the bank associated with a 1-2 year storm event
Materials and Methods

- Supplemental Field measurements
 - floodprone width
 - channel width at bed

- GIS data
 - Watershed area calculation
Channel Vulnerability Calculator

Critical shear stress dependent on d50 and substrate type

Erodibility Ratio = avg. boundary shear stress / critical shear stress

Avg. boundary shear stress = (gradient) * (hydraulic radius) * (unit weight water)
Results

- **Mean ER = 52**
 - Suggests a highly erodible system

- **Site 5**
 - ER = 185
 - Likely caused by sediment starved pulse flows from local irrigation canal

- **Site 7 and 16**
 - Two lowest erodibility ratios
 - Two highest d50
 - Site 7 most favored salmon spawning site

ER = Boundary Shear Stress / Critical Shear Stress (threshold)
Checking the Accuracy of Bankfull Measurements

- Calculation of ER requires accurate measurements of:
 - Bankfull width and depth
 - Gradient

- Method to validate bankfull measurements:
 1. Calculate bankfull discharge based on bankfull measurements
 2. Obtain Q2 data from an independent source i.e., local flood control agency
 - If greater than 30% difference, potential error in measurements
Ongoing work on the Calculator

- Add instructions
- Add Q2 and d50 worksheets
- Develop ranking system for ER
Conclusions

• PHAB data can be used in the Calculator to produce new information on habitat conditions.

• The Calculator suggests Secret Ravine is a highly erodible system
 - Further analysis is ongoing
Key reference

Further Information
Lilly Allen, lallen@oehha.ca.gov
Walker Wieland, wwieland@oehha.ca.gov
Barbara Washburn, washburn@oehha.ca.gov

Questions/Comments?
Further steps in SR assessment

- Collect additional field data on bankfull measurements where we found discrepancy in internal validations
- Examine relation between sources of stress and erodibility ratio
 - Impervious Cover
 - Geology
 - Pulse flows
 - Denuded banks